(Der Blog-Beitrag zu dieser Übung findet sich hier.)
Satz von Bayes / bedingte Wahrscheinlichkeit
Eine Sicherheitssoftware für die Analyse von Videoaufnahmen an einer Flughafen-Sicherheitsschleuse kann das Gesicht von gesuchten Personen mit einer Wahrscheinlichkeit von 92% erkennen. Allerdings identifiziert die Software in 3% aller Fälle eine nicht gesuchte Person irrtümlich als gesucht. Die Sicherheitsbehörden gehen davon aus, dass an einem bestimmten Tag eine Gruppe von 10 gesuchten Personen versuchen wird, die Schleuse zu passieren. Das Personenaufkommen pro Tag liegt bei 10.000 Fluggästen. Mit der Präsenz weiterer gesuchter Personen ist am betrachteten Tag nicht zu rechnen.
a) Mit wie vielen fälschlicherweise als “gesucht” identifizierten Personen ist zu rechnen?
b) Die Software schlägt Alarm. Wie groß ist die Wahrscheinlichkeit dafür, dass tatsächlich eine gesuchte Person entdeckt wurde?
Lösungen der Übungsaufgaben
a) Mit wie vielen fälschlicherweise als “gesucht” identifizierten Personen ist zu rechnen?
Am fraglichen Tag befinden sich 10.000 – 10 = 9.990 “harmlose” Personen auf dem Flughafen. Von diesen werden 3% und somit 299,7 Personen (9.990 * 0,03 = 299,7) fälschlicherweise als “gesucht” identifiziert.
b) Die Software schlägt Alarm. Wie groß ist die Wahrscheinlichkeit dafür, dass tatsächlich eine gesuchte Person entdeckt wurde?
Fälschlicherweise als gesucht identifizierte Personen: 9.990 * 0,03 = 299,7
Richtigerweise als gesucht identifizierte Personen: 10 * 0,92 = 9,2
Insgesamt als gesucht identifizierte Personen: 299,7 + 9,2 = 308,9
Verhältnis: 9,2 / 308,9 = 0,02978
Die Wahrscheinlichkeit dafür, dass die Auslösung eines Alarms tatsächlich auf die Entdeckung einer gesuchten Person zurückgeht, liegt trotz der hohen Treffergenauigkeit der Software aufgrund der geringen a priori-Wahrscheinlichkeit des Merkmals “wird gesucht” bei lediglich 2,9%.
Die hier vorgestellten Inhalte und Aufgaben sind Teil der Vorlesung “Grundlagen der Statistik” im berufsbegleitenden Bachelor-Studiengang Betriebswirtschaftslehre an der Hochschule Harz. Eine vollständige Übersicht aller Inhalte dieser Vorlesung im Wissenschafts-Thurm findet sich hier: Grundlagen der Statistik.